Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

J. Radha Krishna, ${ }^{\text {a }}$ N. Jagadeesh Kumar, ${ }^{\text {a }}$ M. Krishnaiah, ${ }^{\mathbf{a} *}$ C. Venkata Rao, ${ }^{\text {b }}$ Y. Koteswara Rao ${ }^{\text {b }}$ and Vedavati G. Puranik ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, S.V. University, Tirupati 517502, India, ${ }^{\text {b }}$ Department of Chemistry, S.V. University, Tirupati 517502, India, and ${ }^{\mathrm{c}}$ Centre of Material Characterisation, National Chemical Laboratory, Pune 411008, India

Correspondence e-mail:
crystalkrishna@yahoo.co.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.118$
Data-to-parameter ratio $=10.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-1-(2-Hydroxy-3,4-dimethoxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

The title compound, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$, crystallizes with two independent molecules in the asymmetric unit. These are oriented approximately orthogonal to one another. The keto group adopts an s-cis conformation; the six-membered ring formed by the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond and the adjacent benzene ring are approximately coplanar. In addition to an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ interactions link adjacent molecules into chains.

Comment

The title compound (I), also referred to as heliannone A (Macias et al., 1997), is one of the bioactive flavonoids from Helianthus annuus cultivars which possibly play a role in the allelopathic activity of sunflowers. It was synthesized by Koteswara Rao et al. (2001) and we report the crystal structure here.

Received 29 March 2005
Accepted 6 April 2005
Online 16 April 2005

(I)

The two independent molecules, A and B, in the asymmetric unit of (I) are oriented approximately orthogonal to one another at an angle of $85.44(5)^{\circ}$. Bond lengths and angles in the central enone unit agree with those found in chalcone derivatives with different para substituents (Jeyabharathi et al., 2002; Rabinovich \& Shakked, 1974). The keto group adopts an s-cis conformation, with $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 5$ torsion angles of $5.8(2)^{\circ}$ for molecule A and $-0.4(2)^{\circ}$ for molecule B. The keto system is not strictly planar, as can be seen from the torsion angles in Table 1. The least-squares mean planes of the hydroxyphenyl and dimethoxyphenyl rings make dihedral angles with the keto group of 13.93 (5) and $7.32(5)^{\circ}$, respectively, for molecule A, and 8.34 (5) and $8.42(5)^{\circ}$, respectively, for molecule B. The dihedral angles between the rings themselves are 20.61 (5) for molecule A and $9.35(5)^{\circ}$ for molecule B. The enol rings formed by hydrogen bonding, comprising atoms $\mathrm{O} 4 A, \mathrm{O} 5 A, \mathrm{C} 9 A, \mathrm{C}^{\prime}, \mathrm{C} 2^{\prime}$ and H 30 in molecule A, and atoms $\mathrm{O} 4 B, \mathrm{O} 5 B, \mathrm{C} 9 B, \mathrm{Cl}^{\prime \prime}, \mathrm{C} 2^{\prime \prime}$ and $\mathrm{H} 30^{\prime}$ in molecule B, are

Figure 1
The structure of the asymmetric unit of (I), with 30% probability displacement ellipsoids.

Figure 2
The molecular packing of (I), viewed down the b axis. H atoms bonded to C atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds.
slightly distorted. The fused benzene and enol rings are approximately coplanar, with dihedral angles between the least-squares mean planes of the benzene and enol rings of $4.44(5)^{\circ}$ for molecule A and $2.36(5)^{\circ}$ for molecule B.

The structure of (I) is stabilized by intra- and intermolecular hydrogen bonds. The intramolecular interaction involves the hydroxyl group and the adjacent ketone O atom, with $\mathrm{O} 4 A-$ $\mathrm{H} 30 \cdots \mathrm{O} 5 A 2.5534(17) \AA$ for molecule A and $\mathrm{O} 4 B-$ $0 \mathrm{H}_{3} 0^{\prime} \ldots \mathrm{O} 5 B 2.5784$ (16) \AA for molecule B. This classic
interaction is the likely cause of the lengthening of the $\mathrm{C}^{\prime}-$ $\mathrm{O} 4 A[1.340(16) \AA]$ and $\mathrm{C} 2^{\prime \prime}-\mathrm{O} 4 B$ bonds $[1.3391$ (16) $\AA]$ and the shortening of the corresponding $\mathrm{C} 9 A=\mathrm{O} 5 A$ [1.2538 (17) \AA] and $\mathrm{C} 9 B=\mathrm{O} 5 B$ bonds $[1.2406(17) \AA$ in comparison with normal $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}=\mathrm{O}$ distances (Allen et al., 1987). In addition, atom O5A forms an intermolecular hydrogen bond with a hydroxyl group from a neighbouring molecule $B\left[\mathrm{O} 1 B-\mathrm{H} 10^{\prime} \cdots \mathrm{O} 5 A^{\mathrm{ii}} 2.8093\right.$ (16); symmetry code (ii): $x-1, y-1, z-1$], to generate an infinite chain parallel to the b axis (Fig. 2). Further stabilization derives from hydrogen bonds between the H atom of the hydroxyl group $\mathrm{O} 1 A$ and the methoxy atoms $\mathrm{O} 2 B$ and $\mathrm{O} 3 B$. These form additional links between the primary chains $[\mathrm{O} 1 A-$ $\mathrm{H} 10 \cdots \mathrm{O} 3 B^{\mathrm{i}} 3.0616$ (17) and O1 $A-\mathrm{H} 10 \cdots \mathrm{O} 2 B 2.8855$ (19) \AA; symmetry code (i): $-x+2,-y+2,-z+2]$.

Experimental

The title compound was obtained from a solution of 2-hydroxy-3,4dimethoxyacetophenone $(98 \mathrm{mg}, \quad 0.5 \mathrm{mmol})$ and p-hydroxybenzaldehyde ($61 \mathrm{mg}, 0.5 \mathrm{mmol}$) in EtOH (10 ml). This was added dropwise to 50% aqueous $\mathrm{KOH}(10 \mathrm{ml})$. The resulting mixture was stirred at room temperature for 72 h . The reaction mixture was poured into ice-cold water, its pH was adjusted to $3-4$ with 10% aqueous HCl and it was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 20 \mathrm{ml})$. The organic extract was washed with water and brine, dried over anhydrous MgSO_{4} and evaporated under reduced pressure. The resulting residue was purified on a silica-gel column eluted with hexaneEtOAc (7:3) to give yellow crystals of the title chalcone, (I) (72 mg , 48%).

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5}$
$M_{r}=300.30$
Triclinic, $P \overline{1}$
$a=11.6831$ (13) A
$b=11.8477$ (13) \AA
$c=12.9212$ (14) A
$\alpha=111.911$ (2) ${ }^{\circ}$
$\beta=111.296$ (2) ${ }^{\circ}$
$\gamma=92.437(2)^{\circ}$
$V=1512.9(3) \AA^{3}$

Data collection

Siemens SMART CCD area detector diffractometer ω scans
Absorption correction: none
14357 measured reflections
5298 independent reflections

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.318 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8782 \\
& \quad \text { reflections } \\
& \theta=1.9-25.0^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.25 \times 0.25 \times 0.13 \mathrm{~mm}
\end{aligned}
$$

4667 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.118$
$S=1.06$
5298 reflections
502 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0699 P)^{2}\right. \\
& +0.2158 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.025 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{O} 4 \mathrm{~B}-\mathrm{C} 2^{\prime \prime}$	1.3391 (16)	C 8 - C 9 A	1.4650 (19)
$\mathrm{O} 4 A-\mathrm{C} 2^{\prime}$	1.3401 (16)	$\mathrm{C1}^{\prime}-\mathrm{C} 9 A$	1.4644 (19)
O5B-C9B	1.2406 (17)	C8B-C7B	1.323 (2)
$\mathrm{O} 5 A-\mathrm{C} 9 A$	1.2538 (17)	C8B-C9B	1.4693 (18)
C1"-C9B	1.4711 (18)	C1B-C7B	1.4575 (19)
C 8 A-C7A	1.325 (2)	$\mathrm{C} 1 A-\mathrm{C} 7 A$	1.453 (2)
$\mathrm{C}^{\prime \prime}{ }^{\prime}-\mathrm{C1}^{\prime \prime}-\mathrm{C} 9 \mathrm{~B}$	121.83 (12)	O5B-C9B-C8B	120.69 (12)
$\mathrm{C} 2^{\prime \prime}-\mathrm{C}^{\prime \prime}-\mathrm{C} 9 B$	120.01 (11)	$\mathrm{O} 5 B-\mathrm{C} 9 B-\mathrm{Cl}^{\prime \prime}$	120.46 (11)
$\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{C} 9 A$	121.14 (14)	$\mathrm{C} 8 B-\mathrm{C} 9 B-\mathrm{C} 1^{\prime \prime}$	118.79 (12)
$\mathrm{C} 6^{\prime}-\mathrm{C}^{\prime}-\mathrm{C} 9 A$	122.74 (12)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 7 B$	122.77 (12)
$\mathrm{C} 2^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{C} 9 A$	120.15 (12)	$\mathrm{C} 6 B-\mathrm{C} 1 B-\mathrm{C} 7 B$	120.06 (13)
$\mathrm{O} 5 A-\mathrm{C} 9 A-\mathrm{C} 1^{\prime}$	119.11 (12)	$\mathrm{C} 8 B-\mathrm{C} 7 B-\mathrm{C} 1 B$	127.06 (14)
$\mathrm{O} 5 A-\mathrm{C} 9 A-\mathrm{C} 8 A$	119.97 (12)	$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{C} 7 A$	124.26 (13)
$\mathrm{C} 1{ }^{\prime}-\mathrm{C} 9 A-\mathrm{C} 8 A$	120.92 (12)	$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{C} 7 A$	118.17 (14)
$\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{C} 9 B$	122.84 (14)	$\mathrm{C} 8 A-\mathrm{C} 7 A-\mathrm{C} 1 A$	129.86 (15)
$\mathrm{C} 2^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 9 A-\mathrm{C} 8 A$	-174.55 (12)	$\mathrm{C} 2^{\prime \prime}-\mathrm{C}^{\prime \prime}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 8 B$	-171.80 (12)
$\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{C} 9 A-\mathrm{O} 5 A$	5.8 (2)	$\mathrm{C} 9 B-\mathrm{C} 8 B-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 1 B$	179.01 (13)
$\mathrm{C} 7 A-\mathrm{C} 8 A-\mathrm{C} 9 A-\mathrm{C} 1^{\prime}$	-173.69 (15)	$\mathrm{C} 6 B-\mathrm{C} 1 B-\mathrm{C} 7 B-\mathrm{C} 8 B$	175.54 (17)
$\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{C} 9 B-\mathrm{O} 5 B$	-0.4 (2)	$\mathrm{C} 9 A-\mathrm{C} 8 A-\mathrm{C} 7 A-\mathrm{C} 1 A$	178.67 (16)
$\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{C} 9 B-\mathrm{C} 1^{\prime \prime}$	176.69 (13)	$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{C} 7 A-\mathrm{C} 8 A$	-170.5 (2)

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4 A-\mathrm{H} 30 \cdots \mathrm{O} A$	0.92 (2)	1.70 (3)	2.5534 (17)	153 (2)
$\mathrm{O} 4 B-\mathrm{H} 30^{\prime} \cdots \mathrm{O} 5 B$	0.94 (2)	1.74 (2)	2.5784 (16)	147 (2)
$\mathrm{O} 1 A-\mathrm{H} 10 \cdots \mathrm{O} 3 B^{\mathrm{i}}$	0.83 (2)	2.27 (2)	3.0616 (17)	160 (2)
$\mathrm{O} 1 A-\mathrm{H} 10 \cdots \mathrm{O} 2 B^{\mathrm{i}}$	0.83 (2)	2.30 (3)	2.8855 (19)	128 (2)
$\mathrm{O} 1 B-\mathrm{H} 10 \cdot \cdots \mathrm{O} A^{\text {ii }}$	0.90 (2)	1.92 (2)	2.8093 (16)	169 (2)

Symmetry codes: (i) $-x+2,-y+2,-z+2$; (ii) $x-1, y-1, z-1$.

All H atoms, except those on the methyl groups of molecule B, were located in a difference Fourier map and only their positional parameters were refined. The remainder were included in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances constrained to $0.96 \AA$, and allowed to ride on their attached C atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: enCIFer (CCDC, 2003) and PARST (Nardelli, 1995).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
CCDC (2003). enCIFer. Version 1.0. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
Jeyabharathi, A., Ponnuswamy, M. N., Nanjundan, S., Fun, H.-K., Chantrapromma, S., Usman, A. \& Abdul Razak, I. (2002). Acta Cryst. C58, o26-o28.
Koteswara Rao, Y., Venkata Rao, C., Hari Kishore, P. \& Gunasekhar, D. (2001). J. Nat. Prod. 64. 368-369.

Macias, F. A., Molinillo, J. M. G., Torres, A., Varela, R. M. \& Castellano, D. (1997). Phytochemistry, 45, 683-687.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Rabinovich, D. \& Shakked, Z. (1974). Acta Cryst. B30, 2829-2834.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

